

GaAs Infrared Emitting Diodes in Ø 5 mm (T-13/4) Package

Description

TSUS540. series are infrared emitting diodes in standard GaAs on GaAs technology, molded in a clear, blue–grey tinted plastic package. The devices are spectrally matched to silicon photodiodes and phototransistors.

Features

- Low cost emitter
- Low forward voltage
- High radiant power and radiant intensity
- Suitable for DC and high pulse current operation
- Standard T-13/4 (ø 5 mm) package
- Comfortable angle of half intensity $\varphi = \pm 22^{\circ}$
- Peak wavelength $\lambda_p = 950 \text{ nm}$
- High reliability
- Good spectral matching to Si photodetectors

Applications

 Infrared remote control and free air transmission systems with low forward voltage and comfortable radiation angle requirements in combination with PIN photodiodes or phototransistors.

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V_{R}	5	V
Forward Current		I _F	150	mA
Peak Forward Current	$t_p/T = 0.5$, $t_p = 100 \mu s$	I _{FM}	300	mA
Surge Forward Current	t _p = 100 μs	I _{FSM}	2.5	Α
Power Dissipation		P_V	210	mW
Junction Temperature		Tj	100	°C
Operating Temperature Range		T _{amb}	<i>–</i> 55+100	°C
Storage Temperature Range		T _{stg}	<i>–</i> 55+100	°C
Soldering Temperature	$t \le 5 \text{sec}, 2 \text{ mm from case}$	T _{sd}	260	°C
Thermal Resistance Junction/Ambient		R_{thJA}	375	K/W

94 8390

Document Number 81056 Rev. 3, 21–Jun–02

TSUS540.

Vishay Semiconductors

Basic Characteristics

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Min.	Тур.	Max.	Unit
Forward Voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$		V _F		1.3	1.7	V
	$I_F = 1.5 \text{ A}, t_p = 100 \mu\text{s}$		V _F		2.2	3.4	V
Temp. Coefficient of V _F	I _F = 100mA		TK _{VF}		-1.3		mV/K
Reverse Current	V _R = 5 V		I _R			100	μΑ
Junction Capacitance	$V_R = 0 V, f = 1 MHz, E = 0$		Cj		30		pF
Radiant Intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	TSUS5400	l _e	7	14		mW/sr
		TSUS5401	l _e	10	17		mW/sr
		TSUS5402	l _e	15	20		mW/sr
	$I_F = 1.5 \text{ A}, t_p = 100 \ \mu \text{s}$	TSUS5400	l _e	60	140		mW/sr
		TSUS5401	l _e	85	160		mW/sr
		TSUS5402	l _e	120	190		mW/sr
Radiant Power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	TSUS5400	Фe		13		mW
	·	TSUS5401	Фe		14		mW
		TSUS5402	Фe		15		mW
Temp. Coefficient of φ _e	I _F = 20 mA		TΚ _{φe}		-0.8		%/K
Angle of Half Intensity			φ		±22		deg
Peak Wavelength	I _F = 100 mA		λ_{p}		950		nm
Spectral Bandwidth	I _F = 100 mA		Δλ		50		nm
Temp. Coefficient of λ_p	I _F = 100 mA		TK _{λp}		0.2		nm/K
Rise Time	I _F = 100 mA		t _r		800		ns
	I _F = 1.5 A		t _r		400		ns
Fall Time	I _F = 100 mA		t _f		800		ns
	I _F = 1.5 A		t _f		400		ns

Typical Characteristics (T_{amb} = 25°C, unless otherwise specified)

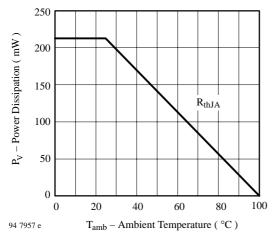


Figure 1. Power Dissipation vs. Ambient Temperature

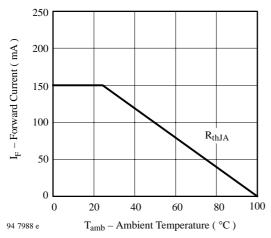


Figure 2. Forward Current vs. Ambient Temperature

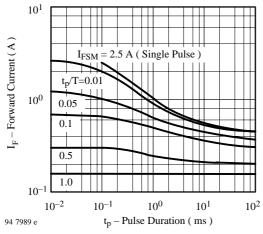


Figure 3. bPulse Forward Current vs. Pulse Duration

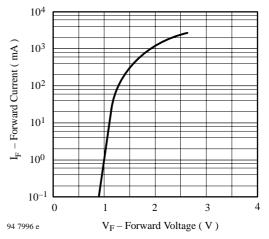


Figure 4. Forward Current vs. Forward Voltage

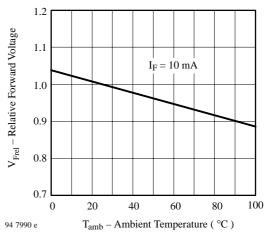


Figure 5. Relative Forward Voltage vs. Ambient Temperature

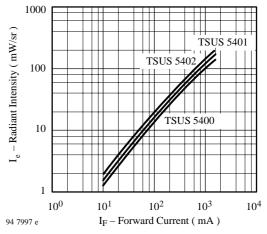


Figure 6. Radiant Intensity vs. Forward Current

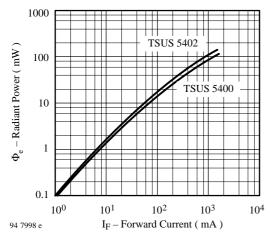


Figure 7. Radiant Power vs. Forward Current

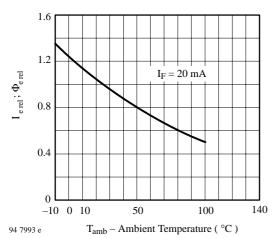


Figure 8. Rel. Radiant Intensity\Power vs. Ambient Temperature

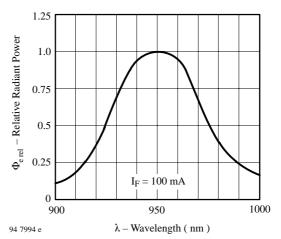


Figure 9. Relative Radiant Power vs. Wavelength

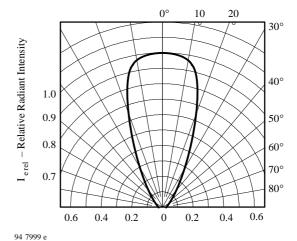
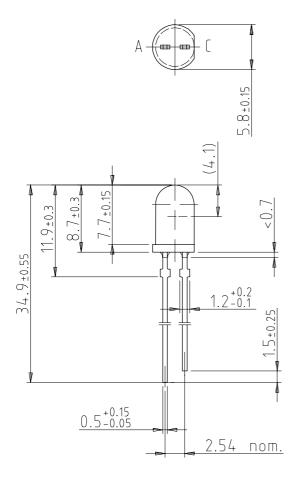
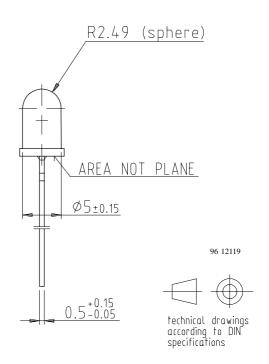




Figure 10. Relative Radiant Intensity vs. Angular Displacement

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or

indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Silicon PIN Photodiode

Description

BPW41N is a high speed and high sensitive PIN photodiode in a flat side view plastic package.

The epoxy package itself is an IR filter, spectrally matched to GaAs or GaAs on GaAlAs IR emitters ($\lambda_D = 950 \text{ nm}$).

The large active area combined with a flat case gives a high sensitivity at a wide viewing angle.

Features

- Large radiant sensitive area (A=7.5 mm²)
- Wide angle of half sensitivity $\varphi = \pm 65^{\circ}$
- High radiant sensitivity
- Fast response times
- Small junction capacitance
- Plastic case with IR filter (λ=950 nm)
- Suitable for near infrared radiation

Applications

High speed photo detector

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V_{R}	60	V
Power Dissipation	$T_{amb} \le 25 ^{\circ}C$	P_V	215	mW
Junction Temperature		T _i	100	°C
Storage Temperature Range		T _{stg}	<i>–</i> 55+100	°C
Soldering Temperature	t ≦ 5 s	T _{sd}	260	°C
Thermal Resistance Junction/Ambient		R _{thJA}	350	K/W

94 8480

Basic Characteristics

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Breakdown Voltage	$I_R = 100 \mu\text{A}, E = 0$	V _(BR)	60			V
Reverse Dark Current	V _R = 10 V, E = 0	Ìro		2	30	nA
Diode Capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz, } E = 0$	C_D		70		pF
	$V_R = 3 \text{ V, f} = 1 \text{ MHz, E} = 0$	C_D		25	40	pF
Open Circuit Voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	V_{o}		350		mV
Temp. Coefficient of Vo	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK_Vo		-2.6		mV/K
Short Circuit Current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	l _k		38		μΑ
Temp. Coefficient of I _k	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{lk}		0.1		%/K
Reverse Light Current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_R = 5 \text{ V}$	I _{ra}	43	45		μΑ
Angle of Half Sensitivity		φ		±65		deg
Wavelength of Peak Sensitivity		λ_{p}		950		nm
Range of Spectral Bandwidth		$\lambda_{0.5}$		8701050		nm
Noise Equivalent Power	$V_R = 10 \text{ V}, \ \lambda = 950 \text{ nm}$	NEP		4x10 ⁻¹⁴		W/√ Hz
Rise Time	$V_R = 10 \text{ V}, R_L = 1 \text{k } \Omega,$ $\lambda = 820 \text{ nm}$	t _r		100		ns
Fall Time	$V_R = 10 \text{ V}, R_L = 1 \text{k } \Omega,$ $\lambda = 820 \text{ nm}$	t _f		100		ns

Typical Characteristics $(T_{amb} = 25^{\circ}C \text{ unless otherwise specified})$

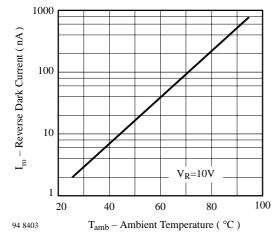


Figure 1. Reverse Dark Current vs. Ambient Temperature

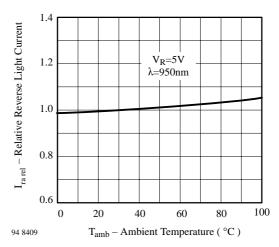


Figure 2. Relative Reverse Light Current vs.
Ambient Temperature

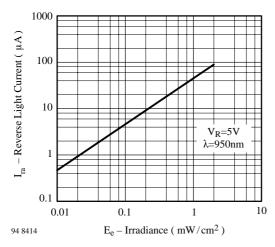


Figure 3. Reverse Light Current vs. Irradiance

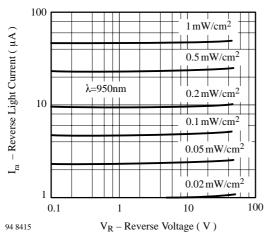


Figure 4. Reverse Light Current vs. Reverse Voltage

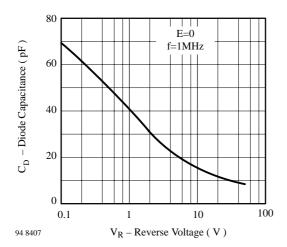


Figure 5. Diode Capacitance vs. Reverse Voltage

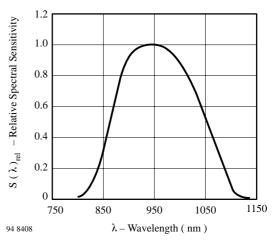


Figure 6. Relative Spectral Sensitivity vs. Wavelength

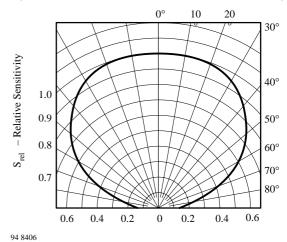
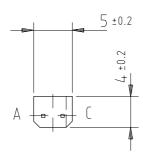
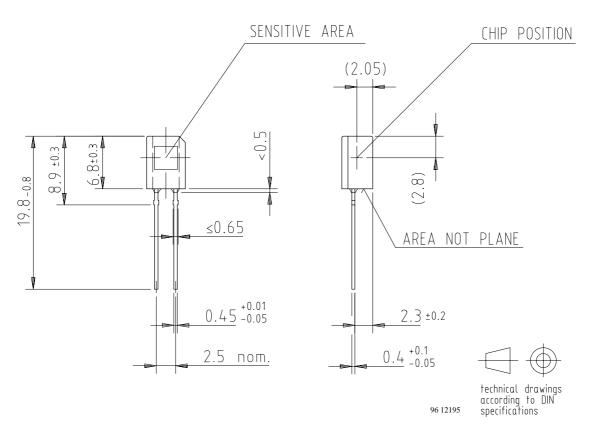




Figure 7. Relative Radiant Sensitivity vs. Angular Displacement

VISHAY

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0) 7131 67 2831, Fax number: 49 (0) 7131 67 2423

Document Number 81522 www.vishay.com 5 (5)